Copied to
clipboard

G = C20.C24order 320 = 26·5

35th non-split extension by C20 of C24 acting via C24/C22=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20.35C24, D20.31C23, Dic10.30C23, C4oD4:16D10, (C2xD4):42D10, (C2xQ8):31D10, D4:D5:19C22, (C2xC20).218D4, C20.427(C2xD4), Q8:D5:18C22, D4:D10:13C2, C4.35(C23xD5), D4.8D10:7C2, C4oD20:21C22, (D4xC10):46C22, (C2xD20):59C22, C5:5(D8:C22), C5:2C8.14C23, D4.D5:17C22, (Q8xC10):38C22, D4.23(C22xD5), (C5xD4).23C23, C5:Q16:16C22, D4.9D10:13C2, D4.D10:13C2, (C5xQ8).23C23, Q8.23(C22xD5), C20.C23:13C2, (C2xC20).557C23, (C22xC10).124D4, C10.160(C22xD4), (C22xC4).282D10, C23.34(C5:D4), C4.Dic5:37C22, (C2xDic10):69C22, (C22xC20).292C22, (C2xC4oD4):4D5, (C10xC4oD4):4C2, (C2xC4oD20):31C2, C4.121(C2xC5:D4), (C2xC5:2C8):23C22, (C2xC10).591(C2xD4), (C5xC4oD4):18C22, (C2xC4.Dic5):31C2, C2.33(C22xC5:D4), C22.21(C2xC5:D4), (C2xC4).203(C5:D4), (C2xC4).246(C22xD5), SmallGroup(320,1494)

Series: Derived Chief Lower central Upper central

C1C20 — C20.C24
C1C5C10C20D20C2xD20C2xC4oD20 — C20.C24
C5C10C20 — C20.C24
C1C4C22xC4C2xC4oD4

Generators and relations for C20.C24
 G = < a,b,c,d,e | a20=b2=c2=e2=1, d2=a10, bab=a-1, ac=ca, ad=da, eae=a11, bc=cb, bd=db, ebe=a5b, cd=dc, ece=a10c, de=ed >

Subgroups: 830 in 262 conjugacy classes, 107 normal (45 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, D5, C10, C10, C2xC8, M4(2), D8, SD16, Q16, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C4oD4, C4oD4, Dic5, C20, C20, D10, C2xC10, C2xC10, C2xM4(2), C4oD8, C8:C22, C8.C22, C2xC4oD4, C2xC4oD4, C5:2C8, Dic10, Dic10, C4xD5, D20, D20, C2xDic5, C5:D4, C2xC20, C2xC20, C5xD4, C5xD4, C5xQ8, C5xQ8, C22xD5, C22xC10, C22xC10, D8:C22, C2xC5:2C8, C4.Dic5, D4:D5, D4.D5, Q8:D5, C5:Q16, C2xDic10, C2xC4xD5, C2xD20, C4oD20, C4oD20, C2xC5:D4, C22xC20, C22xC20, D4xC10, D4xC10, Q8xC10, C5xC4oD4, C5xC4oD4, C2xC4.Dic5, D4.D10, C20.C23, D4:D10, D4.8D10, D4.9D10, C2xC4oD20, C10xC4oD4, C20.C24
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, C24, D10, C22xD4, C5:D4, C22xD5, D8:C22, C2xC5:D4, C23xD5, C22xC5:D4, C20.C24

Smallest permutation representation of C20.C24
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 36)(22 35)(23 34)(24 33)(25 32)(26 31)(27 30)(28 29)(37 40)(38 39)(41 51)(42 50)(43 49)(44 48)(45 47)(52 60)(53 59)(54 58)(55 57)(61 76)(62 75)(63 74)(64 73)(65 72)(66 71)(67 70)(68 69)(77 80)(78 79)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)
(1 56 11 46)(2 57 12 47)(3 58 13 48)(4 59 14 49)(5 60 15 50)(6 41 16 51)(7 42 17 52)(8 43 18 53)(9 44 19 54)(10 45 20 55)(21 61 31 71)(22 62 32 72)(23 63 33 73)(24 64 34 74)(25 65 35 75)(26 66 36 76)(27 67 37 77)(28 68 38 78)(29 69 39 79)(30 70 40 80)
(1 26)(2 37)(3 28)(4 39)(5 30)(6 21)(7 32)(8 23)(9 34)(10 25)(11 36)(12 27)(13 38)(14 29)(15 40)(16 31)(17 22)(18 33)(19 24)(20 35)(41 61)(42 72)(43 63)(44 74)(45 65)(46 76)(47 67)(48 78)(49 69)(50 80)(51 71)(52 62)(53 73)(54 64)(55 75)(56 66)(57 77)(58 68)(59 79)(60 70)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,40)(38,39)(41,51)(42,50)(43,49)(44,48)(45,47)(52,60)(53,59)(54,58)(55,57)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,70)(68,69)(77,80)(78,79), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60), (1,56,11,46)(2,57,12,47)(3,58,13,48)(4,59,14,49)(5,60,15,50)(6,41,16,51)(7,42,17,52)(8,43,18,53)(9,44,19,54)(10,45,20,55)(21,61,31,71)(22,62,32,72)(23,63,33,73)(24,64,34,74)(25,65,35,75)(26,66,36,76)(27,67,37,77)(28,68,38,78)(29,69,39,79)(30,70,40,80), (1,26)(2,37)(3,28)(4,39)(5,30)(6,21)(7,32)(8,23)(9,34)(10,25)(11,36)(12,27)(13,38)(14,29)(15,40)(16,31)(17,22)(18,33)(19,24)(20,35)(41,61)(42,72)(43,63)(44,74)(45,65)(46,76)(47,67)(48,78)(49,69)(50,80)(51,71)(52,62)(53,73)(54,64)(55,75)(56,66)(57,77)(58,68)(59,79)(60,70)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,40)(38,39)(41,51)(42,50)(43,49)(44,48)(45,47)(52,60)(53,59)(54,58)(55,57)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,70)(68,69)(77,80)(78,79), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60), (1,56,11,46)(2,57,12,47)(3,58,13,48)(4,59,14,49)(5,60,15,50)(6,41,16,51)(7,42,17,52)(8,43,18,53)(9,44,19,54)(10,45,20,55)(21,61,31,71)(22,62,32,72)(23,63,33,73)(24,64,34,74)(25,65,35,75)(26,66,36,76)(27,67,37,77)(28,68,38,78)(29,69,39,79)(30,70,40,80), (1,26)(2,37)(3,28)(4,39)(5,30)(6,21)(7,32)(8,23)(9,34)(10,25)(11,36)(12,27)(13,38)(14,29)(15,40)(16,31)(17,22)(18,33)(19,24)(20,35)(41,61)(42,72)(43,63)(44,74)(45,65)(46,76)(47,67)(48,78)(49,69)(50,80)(51,71)(52,62)(53,73)(54,64)(55,75)(56,66)(57,77)(58,68)(59,79)(60,70) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,36),(22,35),(23,34),(24,33),(25,32),(26,31),(27,30),(28,29),(37,40),(38,39),(41,51),(42,50),(43,49),(44,48),(45,47),(52,60),(53,59),(54,58),(55,57),(61,76),(62,75),(63,74),(64,73),(65,72),(66,71),(67,70),(68,69),(77,80),(78,79)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60)], [(1,56,11,46),(2,57,12,47),(3,58,13,48),(4,59,14,49),(5,60,15,50),(6,41,16,51),(7,42,17,52),(8,43,18,53),(9,44,19,54),(10,45,20,55),(21,61,31,71),(22,62,32,72),(23,63,33,73),(24,64,34,74),(25,65,35,75),(26,66,36,76),(27,67,37,77),(28,68,38,78),(29,69,39,79),(30,70,40,80)], [(1,26),(2,37),(3,28),(4,39),(5,30),(6,21),(7,32),(8,23),(9,34),(10,25),(11,36),(12,27),(13,38),(14,29),(15,40),(16,31),(17,22),(18,33),(19,24),(20,35),(41,61),(42,72),(43,63),(44,74),(45,65),(46,76),(47,67),(48,78),(49,69),(50,80),(51,71),(52,62),(53,73),(54,64),(55,75),(56,66),(57,77),(58,68),(59,79),(60,70)]])

62 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F10G···10R20A···20H20I···20T
order12222222244444444455888810···1010···1020···2020···20
size112224420201122244202022202020202···24···42···24···4

62 irreducible representations

dim11111111122222222244
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D5D10D10D10D10C5:D4C5:D4D8:C22C20.C24
kernelC20.C24C2xC4.Dic5D4.D10C20.C23D4:D10D4.8D10D4.9D10C2xC4oD20C10xC4oD4C2xC20C22xC10C2xC4oD4C22xC4C2xD4C2xQ8C4oD4C2xC4C23C5C1
# reps112224211312222812428

Matrix representation of C20.C24 in GL6(F41)

0400000
160000
000100
0040000
0000040
000010
,
3560000
160000
001000
0004000
000001
000010
,
4000000
0400000
0040000
0004000
000010
000001
,
100000
010000
0032000
0003200
0000320
0000032
,
100000
010000
000010
000001
001000
000100

G:=sub<GL(6,GF(41))| [0,1,0,0,0,0,40,6,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0],[35,1,0,0,0,0,6,6,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;

C20.C24 in GAP, Magma, Sage, TeX

C_{20}.C_2^4
% in TeX

G:=Group("C20.C2^4");
// GroupNames label

G:=SmallGroup(320,1494);
// by ID

G=gap.SmallGroup(320,1494);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,675,570,1684,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^20=b^2=c^2=e^2=1,d^2=a^10,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e=a^11,b*c=c*b,b*d=d*b,e*b*e=a^5*b,c*d=d*c,e*c*e=a^10*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<